Solar Fuels via Surface Molecular Catalysis
ACS Catal. 2013
J. Mol. Catal. A 2012
Surface Molecular Catalysts
ACS Catal. 2013
(63) Jiao, L.; Alam, A.; Hwang, S.; Fonseca, J.; Okolie, N.; Shaaban, E.; Li, G.; Liu, E.; Pasaogullari, U.; Babu, S.; Mukerjee, S.; Spendelow, J.; Cullen, D.; Jaouen, F.; Jia, Q. “Self-sacrificing Template Synthesis of Fe-N-C Catalysts with Dense Active Sites Deposited on a Porous Carbon Network for Highly Performance in PEMFC,” Adv. Energy Mater. 2024, 14, 2303952. Link
(62) Fenton, T.; Ahmad, E.; Li, G. “Solar CO2 Reduction using a Molecular Re(I) Catalyst Grafted on SiO2 via Amide and Alkyl Amine Linkages,” Dalton Trans. 2024, 53, 2645-2652. Link
(61) Huang, P.; Shaaban, E.; Ahmad, E.; St. John, A.; Jin, T.; Li, G. “Well-defined Surface Catalytic Sites for Solar CO2 Reduction: Heterogenized Molecular Catalysts and Single Atom Catalysts,” Chem. Commun. 2023, 59, 9301-9319 Link (Invited Feature Article)
(60) Li, J.; Huang, P.; Guo, F.; Huang, J.; Xiang, S.; Yang, K.; Deskins, N.; Batista, V.; Li, G.; Frenkel, A. “X-ray Absorption Spectroscopy Studies of a Molecular CO2-Reduction Catalyst Deposited on Graphitic Carbon Nitride,” J. Phys. Chem. C 2023, 127, 3626–3633 Link
(59) Huang, P.; Huang, J.; Li, J.; Pham, T.; Zhang, L.; He, J.; Brudvig, G.; Deskins, N.; Frenkel, A.; Li, G. “Revealing the Structure of Single Cobalt Sites in Carbon Nitride for Photocatalytic CO2 Reduction,” J. Phys. Chem. C 2022, 20, 8596–8604 Link
(58) Xiang, S.; Huang, P.; Li, J.; Liu, Y.; Marcella, N.; Routh, P.; Li, G.; Frenkel, A. “Solving the structure of “single-atom” catalysts using machine learning - assisted XANES analysis,” Phys. Chem. Chem. Phys. 2022, 24, 5116-5124 Link
(57) Shaaban, E.; Li, G. “Probing Active Sites for Carbon Oxides Hydrogenation on Cu/TiO2 using Infrared Spectroscopy,” Commun. Chem. 2022 , 5, 32 Link
(56) Schwalbe, M.; Huang, H.; Li, G. “Photocatalytic and Photoelectrochemical Carbon Dioxide Reduction,” ChemPhotoChem 2022, 6, e202100217 Link (Editorial for a special collection on Photocatalytic CO2 Conversion)
(55) Huang, P.; Huang, J.; Li, J.; Zhang, L.; He, J.; Caputo, C.; Frenkel, A.; Li, G. “Effect of Carbon Doping on the Photocatalytic Properties of Single Cobalt Sites on Graphitic Carbon Nitride,” ChemNanoMat 2021, 7, 1051-1056 Link
(Invited Contribution to a Special Collection on Carbon Dioxide Conversion)
(54) Jin, L.; Shaaban, E.; Bamonte, S.; Cintron, D.; Shuster, S.; Zhang, L.; Li, G.; He, J. “Surface Basicity of Metal@TiO2 to Enhance Photocatalytic Efficiency for CO2 Reduction,” ACS Appl. Mater. Interface 2021, 13, 38595-38603 Link
(53) Pollak, N.; Huang, P.; Bell, H.; Li, G.; Caputo, C. “One-Pot Photocatalytic Production of Syngas using Co@C3N4 and Black Phosphorus,” ChemPhotoChem 2021, 5, 674-679 Link
(52) Zhang, B.; Xu, S.; He, D.; Chen, R.; He, Y.; Fa, W.; Li, G.; Wang, D. “Photoelectrochemical NADH Regeneration is Highly Sensitive to the Nature of Electrode Surface,” J. Chem. Phys. 2020, 153, 064703 Link
(51) Huang, P.; Pantovich, S.; Okolie, N.; Deskins, N.; Li, G. “Solar Carbon Dioxide Reduction using Macrocyclic Co(III) Complexes Directly Deposited on Semiconductor Surfaces,” ChemPhotoChem 2020, 4, 420-426 Link
(50) Jin, L.; Liu, B.; Louis, M.; Li, G.; He, J. “Highly Crystalline Mesoporous Titania Loaded with Monodispersed Gold Nanoparticle: Controllable Metal-Support Interaction in Porous Materials,” ACS Appl. Energy Mater. 2020, 12, 9617-9627 Link
(49) Iyemperumal, S.; Fenton, T.; Gillingham, S.; Carl, A.; Grimm, R.; Li, G.; Deskins, N. “The Stability and Oxidation of Supported Atomic-Size Catalysts in Reactive Environments,” J. Chem. Phys. 2019, 151, 054702 Link
(48) Louis, M.E.; Li, G. “Infrared Studies of Surface Carbonate Binding to Diimine-Tricarbonyl Re(I) and Mn(I) Complexes in Mesoporous Silica,” J. Coord. Chem. 2019, 72, 1336-1345 Link (Invited contribution to a special issue devoted to Emerging Leaders of Coordination Chemistry)
(47) Huang, P.; Huang, J.; Pantovich, S.; Carl, A.; Fenton, T.; Caputo, C.; Grimm, R.; Frenkel, A.; Li, G. “Selective CO2 Reduction Catalyzed by Single Cobalt Sites on Carbon Nitride under Visible-Light Irradiation," J. Am. Chem. Soc. 2018, 140, 16042–16047 Link
* Featured by UNH Today, BNL Newsroom, NHPR, Technology Networks, Granite Geek, SolarDaily, Correio Braziliense.
(46) Chen, J.; Iyemperumal, S.; Fenton, T.; Carl, A.; Grimm, R.; Li, G.; Deskins, N. “Synergy between Defects, Photoexcited Electrons, and Supported Single Atom Catalysts for CO2 Reduction,” ACS Catal. 2018, 8, 10464-10478 Link
(45) Liu, B.; Louis, M.E.; Jin, L.; Li, G.; He, J. “Co-template-directed Synthesis of Gold Nanoparticles in Mesoporous Titanium Dioxide,” Chem. –Eur. J. 2018, 24, 9651-9657 Link
(44) Stewart, B.; Huang, P.; He, H.; Fenton, T.; Li, G. “Visible-light Degradation of Orange II using an Fe(II)-terpyridine Complex Grafted onto TiO2 Surface,” Can. J. Chem. 2018, 96, 890-895 Link (Invited contribution to a themetic issue on Electron Donor-Acceptor Interactions)
(43) Fenton, T.; Gillingham, S.; Jin, T.; Li, G. "Microwave-assisted Deposition of a Highly Active Cobalt Catalyst on Mesoporous Silica for Photochemical CO2 Reduction," Dalton Trans. 2017, 46, 10721-10726 Link (Invited contribution to a themed issue on The Role of Inorganic Materials in Renewable Energy Applications)
(42) Liu, C.; Iyemperumal, S.; Deskins, N.A.; Li, G. “Photocatalytic CO2 Reduction by Highly Dispersed Cu Sites on TiO2,” J. Photon. Energy 2017, 7, 012004 Link (Invited contribution to a themed issue on Solar Fuels Photocatalysis)
(41) Jin, T.; He, D.; Li, W.; Stanton, C. J. III; Pantovich, S.; Majetich, G. F.; Schaefer, H. F. III; Agarwal, J.; Wang, D.; Li, G. “CO2 Reduction with Re(I)-NHC Compounds: Driving Selective Catalysis with a Silicon Nanowire Photoelectrode,” Chem. Commun. 2016, 52, 14258-14261 Link
(40) Park, J.; Jin, T.; Liu, C.; Li, G.; Yan, M. “A Three-Dimensional Graphene-TiO2 Nanocomposite Photocatalyst Synthesized by Covalent Attachment,” ACS Omega 2016, 1, 351-356 Link
(39) He, D.; Jin, T.; Li, W.; Pantovich, S.; Wang, D.; Li, G. “Photoelectrochemical CO2 Reduction by a Molecular Cobalt(II) Catalyst on Planar and Nanostructured Si Surfaces,” Chem. –Eur. J. 2016, 22, 13064-13067 Link
(38) Liu, C.; Jin, T.; Louis, M.; Pantovich, S.; Skraba-Joiner, S.; Rajh, T.; Li, G. “Molecular Deposition of a Macrocyclic Cobalt Catalyst on TiO2 Nanoparticles,” J. Mol. Catal. A 2016, 423, 293-299 Link
(37) Jin, T.; Liu, C.; Li, G. “Heterogenization of a Molecular Cobalt Catalyst for Photochemical CO2 Reduction,” J. Coord. Chem. 2016, 69, 1748-1758 Link (Invited contribution to a special issue devoted to Emerging Leaders of Coordination Chemistry)
(36) Stanton, C. J. III; Machan, C. W.; Vandezande, J.; Jin, T.; Majetich, G. F.; Schaefer, H. F. III; Kubiak, C. P.; Li, G.; Agarwal, J. “Re(I) NHC Complexes for Electrocatalytic Conversion of CO2,” Inorg. Chem. 2016, 55, 3136-3144 Link
(35) Fenton, T.; Louis, M.E.; Li, G. “Effect of Ligand Derivatization at Different Positions on Photochemical Properties of Hybrid Re(I) Photocatalysts,” J. Mol. Catal. A 2016, 411, 272-278 Link
(34) Louis, M.E.; Fenton, T.; Rondeau, J.; Jin, T.; Li, G. “Solar CO2 Reduction Using Surface-Immobilized Molecular Catalysts,” Comment Inorg. Chem. 2016, 36, 38-60 Link
(33) He, H.; Liu, C.; Louis, M.E.; Li, G. “Infrared Studies of a Hybrid CO2-reduction Photocatalyst Consisting of a Molecular Re(I) complex Grafted on Kaolin,” J. Mol. Catal. A 2014, 395, 145-150 Link
(32) Jin, T.; Liu, C.; Li, G. “Photocatalytic CO2 Reduction Using a Molecular Cobalt Complex Deposited on TiO2 Nanoparticles,” Chem. Commun. 2014, 50, 6221-6224 Link (One of the Hot ChemComm articles for May 2014)
(31) Dubois, K.D.; Liu, C.; Li, G. “Involvement of Surface Adsorbed Water in Photochromism of Spiropyran Molecules Deposited on NaY Zeolite,” Chem. Phys. Lett. 2014, 598, 53-57 Link
(30) Durrell, A.C.; Li, G.; Koepf, M.; Negre, C.F.; Allen, L.J.; McNamara, W.R.; Song, H.; Batista, V.S.; Crabtree, R.H.; Brudvig, G.W. “Photoelectrochemical Oxidation of a Turn-On Fluorescent Probe Mediated by a Surface Mn(II) Catalyst Covalently Attached to TiO2 Nanoparticles,” J. Catal. 2014, 310, 37-44 Link
(29) Louis, M.; Li, G. “Nanostructured Photocatalysts for Solar Water Splitting,” in Nanoscience. Ed. Paul O’brien, The Royal Society of Chemistry. 2013, 2, 81-97 Link
(28) Dubois, K.D.; Li, G. “Innovative Photocatalysts for Solar Fuel Generation by CO2 Reduction,” in New and Future Developments in Catalysis: Solar Photocatalysis. Ed. Steven L. Suib, Elsevier: Amsterdam. 2013, 219-241 Link
(27) Liu, C.; Dubois, K.D.; Louis, M.E.; Vorushilov, A.; Li, G. “Photocatalytic CO2 Reduction and Surface Immobilization of a Tricarbonyl Re(I) Complex Modified with Amide Groups,” ACS Catal. 2013, 3, 655-662 Link
(26) He, H.; Liu, C.; Dubois, K.D.; Jin, T.; Louis, M.E.; Li, G. “Enhanced Charge Separation in Nanostructured TiO2 Materials for Photocatalytic and Photovoltaic Applications,” Ind. Eng. Chem. Res. 2012, 51, 11841-11849 Link
(25) Dubois, K.D.; He, H.; Liu, C.; Vorushilov, A.; Li, G. “Covalent Attachment of a Molecular CO2-Reduction Photocatalyst to Mesoporous Silica,” J. Mol. Catal. A. 2012, 363-364, 208-213 Link
(24) Dubois, K.D.; Petushkov, A.; Cardona, E.G.; Larsen, S.C.; Li, G. “Adsorption and Photochemical Properties of a Molecular CO2 Reduction Catalyst in Hierarchical Mesoporous ZSM-5: An In Situ FTIR Study,” J. Phys. Chem. Lett. 2012, 3, 486-492 Link
(23) Agarwal, J.; Johnson, R.P.; Li, G. “Reduction of CO2 on a Tricarbonyl Rhenium(I) Complex: Modeling a Catalytic Cycle,” J. Phys. Chem. A. 2011, 115, 2877-2881 Link (One of the top 10 most read articles for Q2 2011 for J. Phys. Chem. A)
Graduate and Postdoctoral Work
(22) McConnell, I.; Li, G.; Brudvig, G. W. “Energy Conversion in Natural and Artificial Photosynthesis,” Chem. Biol. 2010, 17, 434-447
(21) Li, G.; Sproviero, E. M.; McNamara, W. R.; Snoeberger, R. C. I.; Crabtree, R. H.; Brudvig, G. W.; Batista, V. S. “Reversible Visible-Light Photooxidation of an Oxomanganese Water-Oxidation Catalyst Covalently Anchored to TiO2 Nanoparticles,” J. Phys. Chem. B 2010, 114, 14214–14222
(20) McNamara, W. R.; Snoeberger III, R. C.; Li, G.; Richter, C.; Allen, L. J.; Milot, R. L.; Schmuttenmaer, C. A.; Crabtree, R. H.; Brudvig, G. W.; Batista, V. S. “Hydroxamate Anchors for Water-Stable Attachment to TiO2 Nanoparticles,” Energy Environ. Sci. 2009, 2, 1173-1175
(19) Li, G.; Richter, C.; Milot, R. L.; Cai, L.; Schmuttenmaer, C. A.; Crabtree, R. H.; Brudvig, G. W.; Batista, V. S. “Synergistic Effect Between Anatase and Rutile TiO2 Nanoparticles in Dye-Sensitized Solar Cells,” Dalton Trans. 2009, 10078-10085
(18) Li, G.; Sproviero, E. M.; Snoeberger, R. C. I.; Iguchi, N.; Blakemore, J. D.; Crabtree, R. H.; Brudvig, G. W.; Batista, V. S. “Deposition of an Oxomanganese Water Oxidation Catalyst on TiO2 Nanoparticles: Computational Modeling, Assembly and Characterization,” Energy Environ. Sci. 2009, 2, 230-238
(17) Chen, L.; Graham, M. E.; Li, G.; Gentner, D. R.; Dimitrijevic, N.; Gray, K. A. “Photoreduction of CO2 by TiO2 Nanocomposites Synthesized Through Reactive Direct Current Magnetron Sputter Deposition,” Thin Solid Films 2009, 517, 5641-5645
(16) McNamara, W. R.; Snoeberger, R. C. I.; Li, G.; Schleicher, J. M.; Cady, C. W.; Poyatos, M.; Schmuttenmaer, C. A.; Crabtree, R. H.; Brudvig, G. W.; Batista, V. S. “Acetylacetonate Anchors for Robust Functionalization of TiO2 Nanoparticles with Mn(II)-Terpyridine Complexes,” J. Am. Chem. Soc. 2008, 130, 14329-14338
(15) Li, G.; Dimitrijevic, N.; Chen, L.; Rajh, T.; Gray, K. A. “Role of Surface/Interfacial Cu2+ Sites in the Photocatalytic Activity of Coupled CuO-TiO2 Nanocomposites,” J. Phys. Chem. C 2008, 112, 19040-19044
(14) Li, G.; Dimitrijevic, N.; Chen, L.; Nichols, J.; Rajh, T.; Gray, K. A. “The Important Role of Tetrahedral Ti4+ Sites in the Phase Transformation and Photocatalyt Activity of TiO2 Nanocomposites,” J. Am. Chem. Soc. 2008, 130, 5402-5403
(13) Yao, Y.; Li, G.; Gray, K. A.; Lueptow, R. M. “Single-Walled Carbon Nanotube-Facilitated Dispersion of Particulate TiO2 on ZrO2 Ceramic Membrane Filters,” Langmuir 2008, 24, 7072-7075
(12) Yao, Y.; Li, G.; Ciston, S.; Lueptow, R. M.; Gray, K. A. “Photoreactive TiO2/Carbon Nanotube Composites: Synthesis and Reactivity,” Environ. Sci. Technol. 2008, 42, 4952-4957
(11) Li, G.; Ciston, S.; Saponjic, Z.; Chen, L.; Dimitrijevic, N.; Rajh, T.; Gray, K. A. “Synthesizing Mixed Phase TiO2 Nanocomposites Using a Hydrothermal Method for Photooxidation and Photoreduction Applications,” J. Catal. 2008, 253, 105-110
(10) Li, G.; Chen, L.; Dimitrijevic, N.; Gray, K. A. “Visible Light Photocatalytic Properties of Anion-doped TiO2 Materials Prepared from a Molecular Titanium Precursor,” Chem. Phys. Lett. 2008, 451, 75-79
(9) Li, G.; Gray, K. A. “The Solid-Solid Interface: Explaining the High and Unique Photocatalytic Reactivity of TiO2-Based Nanocomposite Materials,” Chem. Phys. 2007, 339, 173-187
(8) Li, G.; Gray, K. A. “Preparation of Mixed-phase TiO2 Nanocomposites via Solvothermal Processing,” Chem. Mater. 2007, 19, 1143-1146
(7) Li, G.; Chen, L.; Graham, M. E.; Gray, K. A. “A Comparison of Mixed Phase Titania Photocatalysts Prepared by Physical and Chemical Methods: The Importance of the Solid-solid Interface,” J. Mol. Catal. A 2007, 275, 30-35
(6) Chen, L.; Graham, M. E.; Li, G.; Gray, K. A. “Fabricating Highly Active Mixed-Phase TiO2 Photocatalysts by Reactive DC Magnetron Sputter Deposition,” Thin Solid Films 2006, 515, 1176-1181
(5) Song, W.; Li, G.; Grassian, V.; Larsen, S. “Development of Improved Materials for Environmental Applications: Nanocrystalline NaY Zeolites,” Environ. Sci. Technol. 2005, 39, 1214-1220
(4) Li, G.; Jones, C. A.; Grassian, V. H.; Larsen, S. C. “Selective Catalytic Reduction of NO2 with Urea in Nanocrystalline NaY Zeolite,” J. Catal. 2005, 234, 401-413
(3) Li, G.; Larsen, S. C.; Grassian, V. H. “An FT-IR Study of NO2 Reduction in Nanocrystalline NaY Zeolite: Effect of Zeolite Crystal Size and Adsorbed Water,” Catal. Lett. 2005, 103, 23-32
(2) Li, G.; Larsen, S. C.; Grassian, V. H. “Catalytic Reduction of NO2 in Nanocrystalline NaY zeolite,” J. Mol. Catal. A 2005, 227, 25-35
(1) Li, G.; Xu, M.; Larsen, S. C.; Grassian, V. H. “Photooxidation of Cyclohexane and Cyclohexene in BaY,” J. Mol. Catal. A 2003, 194, 169-180